Non-Parametric Statistical Thresholding for Sparse Magnetoencephalography Source Reconstructions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-Parametric Statistical Thresholding for Sparse Magnetoencephalography Source Reconstructions

Uncovering brain activity from magnetoencephalography (MEG) data requires solving an ill-posed inverse problem, greatly confounded by noise, interference, and correlated sources. Sparse reconstruction algorithms, such as Champagne, show great promise in that they provide focal brain activations robust to these confounds. In this paper, we address the technical considerations of statistically th...

متن کامل

Non-parametric Statistical Inference

In most statistical problems treated in the literature a datum of the problem is the information that the various distributions of the chance variables involved belong to given families of distribution functions (d.f.'s) completely specified except for one or more parameters. Non-parametric statistical inference is concerned with problems where the d.f.'s are not specified to such an extent, an...

متن کامل

Non-parametric Bayesian mixture of sparse regressions with application towards feature selection for statistical downscaling

Climate projections simulated by Global Climate Models (GCMs) are often used for assessing the impacts of climate change. However, the relatively coarse resolutions of GCM outputs often preclude their application to accurately assessing the effects of climate change on finer regional-scale phenomena. Downscaling of climate variables from coarser to finer regional scales using statistical method...

متن کامل

Iterative Thresholding for Sparse Approximations

Sparse signal expansions represent or approximate a signal using a small number of elements from a large collection of elementary waveforms. Finding the optimum sparse expansion is known to be NP hard in general and non-optimal strategies such as Matching Pursuit, Orthogonal Matching Pursuit, Basis Pursuit and Basis Pursuit De-noising are often called upon. These methods show good performance i...

متن کامل

Non-parametric statistical fault localization

Fault localization is a major activity in program debugging. To automate this time-consuming task, many existing fault-localization techniques compare passed executions and failed executions, and suggest suspicious program elements, such as predicates or statements, to facilitate the identification of faults. To do that, these techniques propose statistical models and use hypothesis testing met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Frontiers in Neuroscience

سال: 2012

ISSN: 1662-4548

DOI: 10.3389/fnins.2012.00186